Enrique Galindo Fentanes

Enrique Galindo Fentanes

La colaboración que lidera Arturo Fernández Téllez, investigador de la BUAP, ha dado lugar a dos patentes, la publicación de artículos arbitrados, el diseño y construcción de dos detectores y, con ello, la formación de recursos humanos.

La ciencia tiene la capacidad de reunir por un interés común a científicos de todo el mundo y hacerlos trabajar en equipo. El ejemplo por excelencia es la Organización Europea para la Investigación Nuclear (CERN), con el Gran Colisionador de Hadrones (LHC) y el experimento ALICE (A Large Ion Collider Experiment) en el que participan como invitados 37 países, 151 instituciones y más de mil 550 investigadores, incluidos 40 científicos mexicanos.

Entre las universidades mexicanas con presencia en este experimento ubicado en la frontera franco-suiza se encuentra la Benemérita Universidad Autónoma de Puebla (BUAP), cuya colaboración inició formalmente en el año 2001 para proponer la construcción del detector de partículas Cosmic Ray Detector (ACORDE), como parte del conjunto de instrumentos de ALICE para estudiar iones pesados.

“Con ALICE propusimos colisionar iones pesados para estudiar a la materia del núcleo atómico en condiciones extremas. Utilizando el LHC, los hacemos chocar ya que en el momento de la colisión se da una situación única: una muy alta densidad de materia y una temperatura de cientos de miles de veces la temperatura que hay en el interior del Sol. En estas condiciones, la materia sufre cambios muy drásticos, se tiene un estado físico que conocemos como desconfinamiento de la materia nuclear”, señaló el físico Arturo Fernández Téllez.

Es el momento en el que los quarks, partículas que conforman a los protones, neutrones y los gluones —estos últimos portadores de la interacción fuerte— forman un plasma en un estado similar al que se produjo pocos microsegundos después del Big Bang, cuando el universo se empezó a expandir, explicó el investigador de la Facultad de Ciencias Físico Matemáticas de la BUAP e integrante de la Academia Mexicana de Ciencias.

“La existencia de este estado de la materia es muy especial, se descubrió hace más de 10 años y desde entonces se están estudiando sus propiedades físicas”, indicó el líder de la presencia poblana en el CERN, quien añadió que esta colaboración ha representado muchos beneficios para todos, pues ha permitido formar recursos humanos de nivel licenciatura, maestría y doctorado, se han podido publicar artículos arbitrados en revistas internacionales, además de diseñar, construir, poner en marcha y experimentar con los ACORDE y el detector AD (ALICE Diffractive detector), dos detectores que llevan sello mexicano.

Además, se han patentado dos invenciones tecnológicas en México; la primera es un dispositivo llamado Contadora lógica de partículas, un sistema electrónico que registra el paso de partículas con carga eléctrica. La innovación de este sistema electrónico consistió en que es versátil, pequeño y portátil. El registro se obtuvo el 29 de mayo de 2014.

La otra patente es el Piano Cósmico -cuyo registro se obtuvo el 14 de junio de 2013-, un dispositivo que se lleva a ferias científicas con fines pedagógicos y de divulgación de la ciencia. El aparato tiene cuatro pequeños detectores similares a los de ACORDE, cuando se detecta un rayo cósmico, produce un beep de sonido y un flash de luz, tomando en cuenta que estas partículas llegan en todo momento a la superficie terrestre, de manera azarosa, se producen sonidos, los que Fernández Téllez ha nombrado como música cósmica.

Para hacer más agradable “el ruido” producido por este dispositivo, se le programó la emisión de los beeps que producen los detectores de rayos cósmicos con distintas frecuencias musicales. En el sitio http://alicematters.web.cern.ch/?q=ALICE_cosmicpiano se puede ver en acción el Piano Cósmico, en dueto con el pianista Al Palmer, en el Festival de Jazz de Montreux, Suiza.

Una contribución adicional es que desde el año 2002 se aceptó que se abriera en el ALICE una área de estudio de la física de astropartículas. “Hemos analizado los rayos cósmicos de muy alta energía que llegan a la Tierra. Son partículas con carga eléctrica, expulsadas de los objetos astrofísicos que rodean a la Tierra como las galaxias y estrellas, viajan por el espacio por años, llegan a la Tierra, pasan la atmósfera terrestre y producen una cascada de partículas. Así como los astrónomos reciben información de las estrellas observando sus espectros de luz, también hay formas de estudiar a las estrellas analizando a las partículas que provienen de ellas, por eso se llaman astropartículas”, explicó Fernández Téllez.

En especial, este campo se ocupa de las partículas que producen una cantidad anómala de muones de muy alta energía, son capaces de atravesar hasta cien metros de roca sólida y pasar por el sistema de detección de ALICE, que se encuentra en una caverna a 60 metros bajo tierra, y ser detectados. “Esos fenómenos son muy especiales y, no se habían estudiado a profundidad, hasta que llegó ALICE”, señaló el académico.

Se prevé que la cooperación mexicana con el CERN, en la que participan físicos de partículas, teóricos y prácticos, así como ingenieros de la Universidad Nacional Autónoma de México, del Centro de Investigación y de Estudios Avanzados, la Universidad Autónoma de Sinaloa y, más recientemente, la Universidad Autónoma de Chiapas, continúe por 10 años más, y que se estudien distintos campos de la física como el plasma de quarks y gluones, así como física de colisiones ultra-periféricas.

 

En 2004, durante el Congreso Internacional de Relatividad General que se celebró en Dublín, Irlanda, el científico mexicano Miguel Alcubierre Moya atrajo la atención del famoso físico británico Stephen Hawking durante una conferencia que aquel impartió.

Stephen Hawking (1942-2018) fue un científico con una agenda de actividades muy intensa, por lo que era muy selectivo con los eventos académicos a los que asistía, por lo que decidió ir a la conferencia que el actual director del Instituto de Ciencias Nucleares de la Universidad Nacional Autónoma de México (UNAM) impartió hace 14 años. 

“Lo conocía, había ido a cuatro de sus conferencias, pero era la primera vez que él estaba en una de mis pláticas. Cuando empecé mi plática advertí que él estaba en primera fila; yo estaba muy nervioso”, recordó el físico teórico mexicano.

Alcubierre Moya impartió una conferencia de su trabajo, de simulaciones computacionales de agujeros negros y de los choques de agujeros negros, lo cual era un tema novedoso hace 14 años.

“En esa conferencia les mostré las simulaciones de choques de agujeros negros que en esa época todavía no los podíamos hacer muy bien. Ahora ya nos salen muy bonitos. Pero en esa época teníamos muchos problemas, entonces les platiqué de los avances que se habían hecho en los últimos años”.

Hawking permaneció toda la conferencia muy atento. Al final no hubo ningún intercambio de preguntas entre el británico y el mexicano, ya que los asistentes y la prensa se abalanzaron sobre Hawking.

“Sí lo conocí en persona pero nunca tuve la oportunidad de charlar con él… Me hubiera gustado que me explicara más a fondo la radiación de Hawking porque es un tema muy complicado todavía y para quienes nos dedicamos a estudiar esto, también me hubiera gustado preguntarle la paradoja de la pérdida de información de los agujeros negros. En 2004, él reconoció que su planteamiento de que al caer un objeto su información era aniquilada resultó erróneo, incluso por esto perdió una famosa apuesta. Yo no estoy tan convencido de que esto sea así, me hubiera gustado preguntarle en los últimos años si aún estaba seguro de que había perdido”.

El legado de Hawking

En entrevista para la Agencia Informativa Conacyt, Alcubierre Moya expresó que Stephen Hawking fue un científico muy brillante y completo, ya que hizo grandes aportaciones a la física y a la divulgación, además era una persona muy valiente y admirable.

Hawking hizo contribuciones muy importantes a la física, principalmente en la parte de cosmología, en los estudios de la gravedad, la gravitación cuántica, los agujeros negros e incluso de la termodinámica.

“Él demostró que la teoría de Einstein fallaba, porque una teoría que predice infinitos está mal, por lo menos en el origen del universo y en los agujeros negros la teoría de Einstein falla y con la teoría de Hawking ya no quedaba ninguna duda”.

Esa fue la primera gran contribución del físico teórico británico cuando aún era muy joven. Más adelante se puso a trabajar en un tema que todavía no está resuelto, se trata de una teoría unificadora de la relatividad general con la mecánica cuántica.

Agujeros negros no tan negros

“Hawking trabajó en ese tema e hizo uno de los pocos cálculos que existen a la fecha en la que todo mundo está de acuerdo, ese cálculo es realmente revolucionario. Hawking demostró que cuando se aplicaban las leyes de la mecánica cuántica a los agujeros negros resultaba que estos radian energía, tienen una cierta temperatura proporcional a su área y emiten radiación”.

Esta radiación de los agujeros negros, generados por la muerte de una estrella, es muy pequeña, es casi despreciable, y por eso no tiene un efecto importante sobre el universo en la práctica, pero tiene un efecto teórico enorme, sacudió la teoría hasta sus cimientos demostrando que los agujeros negros no eran del todo negros, a esto se le conoce como la radiación de Hawking.

Actualmente cualquier teoría cuántica de la gravedad debe poder reproducir el resultado de Hawking, señaló el miembro nivel III, del Sistema Nacional de Investigadores (SNI) del Consejo Nacional de Ciencia y Tecnología (Conacyt).

¿Por qué no ganó el Nobel?

Pese a las aportaciones que hizo, Hawking no recibió el Premio Nobel porque la radiación que hay en los agujeros negros que propone el británico no se ha podido medir y las reglas de este prestigiado galardón establecen que para otorgar la distinción a un físico teórico sus resultados deben ser comprobados en un experimento o una observación astronómica.

“Los resultados no se han podido medir porque no tenemos agujeros negros aquí cerquita o en el laboratorio para que podamos medir esto, pero no cabe duda que el cálculo está bien hecho porque sale de muchas maneras diferentes”.

Propiedades del agujero negro

Hawking trabajó en el origen del universo y después continuó con el estudio de los agujeros negros porque la famosa radiación de Hawking propone propiedades muy curiosas, por ejemplo, que esta radiación no lleva ninguna información, que es completamente caótica.

“Hay una apuesta muy famosa en la que él apostó que los agujeros negros destruyen toda la información, por ejemplo, si un objeto cae en un agujero negro, se aniquila y pierde toda su información, esto contradice la mecánica cuántica que dice que la información se conserva, no se puede destruir”.

Para Miguel Alcubierre, el problema aún no está del todo resuelto, pero en 2004 Hawking reconoció que había perdido la apuesta y dijo que estaba convencido de que la información no se perdía.

Hawking, el incansable divulgador 

Además de sus contribuciones en el ámbito científico, el físico británico también se preocupó por explicar a toda la gente, estuviera o no inmersa en la ciencia, lo que él hacía y por qué era importante.

“Tenía su faceta de divulgador, en 1988 publicó su libro Breve historia del tiempo, que posiblemente sea el libro de divulgación de la física más vendido en la historia. Hawking ayudó a llevar estos conceptos de los agujeros negros al público general”.

En síntesis, el británico fue un gran científico y una persona ejemplar, nunca se rindió, siempre tenía un enorme sentido del humor, hacía chistes y se reía de sí mismo, recordó con nostalgia Alcubierre Moya, el físico mexicano que captó —durante un breve momento en la historia de la física— la atención de Stephen Hawking.

 

 

 

Uno de los principios de la ciencia es que el conocimiento solo es valioso si se comparte, pero ¿cómo divulgar tus ideas cuando no eres capaz de hablar ni de escribir?

Esa fue la compleja situación a la que se enfrentó durante prácticamente toda su vida el reconocido físico y cosmólogo Stephen Hawking, fallecido hoy a los 76 años de edad , quien vivía postrado en una silla de ruedas a causa de su esclerosis lateral amiotrófica (ELA).

Una operación de urgencia en 1985 le hizo perder la voz. Pero un sofisticado sistema informático que Intel creó específicamente para él se la devolvió. O, por lo menos, le otorgó un acento que se volvería tan característico de él como su propia imagen, y le permitió expresar las ideas sobre el universo que pasaban por su mente.

Escribir con la mejilla

“Desde 1997, tengo una computadora instalada en el brazo de mi silla de ruedas”, se lee en un artículo que el famoso científico publicó en su página web. Fue ese año cuando Hawking conoció a Gordon Moore, cofundador de Intel.

“Comenzó con una cena con Moore y otra gente de Intel y se convirtió en una trascendental relación de 20 años”, escribió el exdirectivo de Intel Howard High en un blog dedicado a extrabajadores de Intel, Intel Retiree, en un artículo que tituló “Dándole voz a un genio” (PDF).

“No recuerdo exactamente en qué evento fue, pero tuve la oportunidad de hablar con Hawking directamente”. “Recuerdo que su mujer me dijo que era fantástico que me dirigiera a él, pues la mayoría le hablaban a ella aunque él estuviera sentado justo delante”.

El ingeniero dijo que le sorprendió lo fácil que era comunicarse con Hawking y que por aquel entonces el científico usaba una computadora de escritorio conectada a unas enormes baterías en la parte trasera de su silla de ruedas. Un altavoz proyectaba su voz.

Pero hace dos décadas Hawking todavía podía mover su mano, con la que usaba esa máquina. Hasta que sus músculos se fueron, poco a poco, deteriorando hasta quedar paralizado.

“Interactúo con esa computadora a través de un programa llamado ACAT (Assistive Context-Aware Toolkit) que me muestra un teclado en la pantalla. Un cursor escanea automáticamente ese teclado por filas o columnas, y puedo seleccionar una letra moviendo mi mejilla para hacer detener el cursor”, explicó Hawking.

“El movimiento de mi mejilla es detectado por un interruptor colocado en sus anteojos, que es mi única forma de interacción con la computadora”.

Pero dentro de ese sistema tan complejo, Hawking contaba con algunas facilidades. Por ejemplo, el software en cuestión incluía un algoritmo basado en el vocabulario de sus libros y conferencias, de manera que le bastaba con teclear los dos primeros caracteres para que le apareciera la palabra completa, como un corrector automático personalizado.

A través de ese software, Hawking era también capaz de controlar el mouse en Windows para poder manejar la computadora: “Puedo controlar mi email usando Microsoft Outlook, navegar por internet o escribir mis ponencias en Word. También tengo una cámara para usar Skype o mantenerme en contacto con mis amigos”.

“Puedo expresar mucho a través de mis gestos faciales a quienes me conocen bien”, declaró.

En cuando a la voz, la cosa se complicaba todavía más.

Un acento especial

“Cuando tengo una frase lista, puedo enviarla a mi sintetizador de voz. Uso un hardware desarrollado por Speech Plus”, escribió Hawking. “Es lo mejor que he escuchado, aunque me pone un acento que ha sido descrito como escandinavo, estadounidense o escocés”, declaró el físico.

“La voz de Stephen está protegida por IP”, explicó Lama Nachman, una ingeniera del equipo de Intel que ayudó a mejorar la interfaz que usó Hawking durante más de dos décadas. “A él le gusta mucho cómo suena”, dijo en junio de 2017 la especialista.

De hecho, tal y como asegura la escritora Joyce Riha Linik en un artículo para el sitio web de Intel, algunos seguidores del renombrado físico estallaron en carcajadas cuando dijo en una conferencia que estaba buscando otra voz, que era “icónica”, asegura, “su sonido estaba incrustado en nuestra forma de pensar sobre el Universo”.

El sistema le permitía dar conferencias: “Las escribo y almaceno en el disco duro y después uso una parte del software llamada Lecture Manager (gestor de conferencias, en español) para enviarlo al sintetizador de voz, párrafo por párrafo”.

“Funciona bastante bien y puedo ensayar la lectura y revisarla antes de entregarla”, aseguró.

Hawking dijo que había experimentado con otros sistemas de asistencia. Contó que había usado seguimiento ocular e interfaces cerebrales para comunicarse, pero su sistema le gustaba más.

“Aunque (otras tecnologías) funcionan bien para otra gente, sigo encontrando más fácil usar el interruptor de mi mejilla”, declaró. El sistema que usaba tuvo que ir adaptándose con los años sus necesidades y al avance de su enfermedad, a medida que iba perdiendo movilidad. En la última etapa de su vida, apenas era capaz de mover un músculo cerca del ojo.

Fuente: BBC

 

Sábado, 17 Marzo 2018 05:46

Stephen Hawking: una mente sin límites

El físico británico profundizó en el estudio de los hoyos negros, propuso una visión integral de la física y planteó la existencia de la llamada “radiación de Hawking”, recordó Saúl Ramos, del Instituto de Física de la UNAM

Su persona es la prueba de que la conciencia trasciende a la realidad, dijo Vladimir Ávila, del Instituto de Astronomía.

Una de las mentes científicas más luminosas del siglo XX deja a la humanidad un legado que viaja generoso de la exploración teórica de los hoyos negros y la singularidad del espacio-tiempo, a cuestiones más mundanas, como la divulgación de la ciencia y la demostración de que la búsqueda del conocimiento rompe cualquier barrera cuando su motor de vida es la inteligencia.

“Stephen Hawking es la prueba de que la conciencia trasciende a la realidad, que la mente está sobre la materia. Su determinación, tenacidad y persistencia, pero sobre todo su amor a la vida, hicieron que su brillante mente no tuviera límites”, resumió Vladimir Ávila Reese, investigador del Instituto de Astronomía (IA) de la UNAM.

Físico teórico, astrofísico, cosmólogo y divulgador científico británico, Stephen Hawking (1942-2018) nació en Oxford y desarrolló su carrera académica en la Universidad de Cambridge. Desde allí despegó como un eminente profesor de física para convertirse en una celebridad universal.

Desde los 22 años padeció esclerosis lateral amiotrófica, una enfermedad que fue limitando cada vez más sus movimientos, pero que nunca redujo su trabajo científico, pese a que el diagnóstico predijo que viviría sólo hasta los 24 años.

A los 32, fue una de las personas más jóvenes en ser aceptadas como miembro de la Royal Society, la asociación científica más antigua del planeta, fundada en 1660.

Agujeros negros

Como un “gran generador de ideas” calificó a Hawking el astrofísico José Franco, también investigador del Instituto de Astronomía y coordinador del Foro Consultivo Científico y Tecnológico (FCCyT). Recordó que, desde fines de la década de los 60, Hawking desarrolló trabajos que ayudaron a entender cómo funcionaba la física de los agujeros negros.

“En aquella época los agujeros negros eran una curiosidad. La comunidad científica no creía en ellos y, de hecho, la evidencia de que existían en los centros de las galaxias se comenzó a dilucidar hasta la década de los años 90. El trabajo de Hawking fue pionero en esta área y contribuyó a construir el mejor cuerpo de ideas sobre las características de los agujeros negros y del inicio de nuestro Universo”, relató.

Radiación de Hawking

Una de las principales contribuciones del físico británico es el hallazgo de la llamada “radiación de Hawking”. Él consideró que la mecánica cuántica debería ser considerada al estudiar los agujeros negros, algo que había sido dejado de lado durante los primeros años de la Relatividad General de Einstein, una teoría clásica y divorciada de la mecánica cuántica, el otro gran hallazgo del siglo XX.

“A él se le ocurrió que no debería ser así porque en la frontera de los agujeros negros, en el horizonte de eventos –ese sitio donde nada escapa de la atracción del agujero negro, ni siquiera la luz– puede haber partículas de materia y antimateria que escapan unas hacia adentro y otras hacia afuera del agujero. Las partículas que pueden escapar libremente son la radiación de Hawking”, explicó Saúl Noé Ramos Sánchez, investigador del Instituto de Física (IF) de esta casa de estudios.

Vladimir Ávila señaló que el británico encontró que la atmósfera de los hoyos negros puede evaporarse generando radiación gamma, bautizada luego como radiación Hawking. Mostró que los hipotéticos hoyos negros primigenios se desintegrarían por completo en radiación gamma.

Hawking se dio cuenta de que en el centro de los agujeros negros debía existir algo que matemáticamente se conoce como singularidad, es decir, una cantidad enorme de materia y energía concentrada en un solo punto. “Es inevitable que en toda cosmología existan estas singularidades. Deben existir particularmente en el pasado muy remoto, cuando el Universo estaba concentrado en una singularidad”, opinó Ramos.

Otra aportación que destacó Ramos fue la idea de Hawking de que la física no se puede seccionar (en clásica, cuántica o termodinámica). “Pensaba que la física es una misma, y así había que pensarla”.

Se fue sin el Premio Nobel

El célebre físico no recibió el Premio Nobel de Física porque no se ha podido medir la radiación de Hawking. “No tenemos un hoyo negro aquí en un laboratorio, ni podemos ir a uno real”, acotó.

A Hawking y otros colegas se les ocurrió una idea para medir desde la Tierra la radiación que lleva su nombre. A través del Gran Colisionador de Hadrones se pueden medir partículas elementales y crear mini agujeros negros.

“Cuando surja en ese colisionador una enorme cantidad de radiación con muchas partículas esféricamente simétricas yendo para todas partes con la misma densidad, entonces habrán encontrado la radiación de Hawking”, expuso Ramos.

Con un talento extraordinario para la divulgación de la ciencia, Hawking pensó en una cosmología para todos, para que el público no especializado tuviera una noción de la historia del Universo.

Con ideas muy claras y gran capacidad de síntesis, en 1988 escribió el libro de divulgación científica Breve historia del tiempo, del Big Bang a los agujeros negros. Desde que fue publicado, su texto más conocido se mantuvo cuatro años y medio  entre los 50 más vendidos del Reino Unido, de acuerdo con las listas del periódico londinense The Sunday Times.

En 2005, con Leonard Mlodinow, publicó Brevísima historia del tiempo, en donde trató de explicar de la forma más sencilla posible la historia del Universo. “Conciencia y ciencia unidas en él lo llevaron a formularse cuestiones fundamentales de nuestro entendimiento de los hoyos negros, del origen del espacio-tiempo, de la evolución del Universo y otras. A pesar de la gran limitación corporal que sufría, pudo hacer ciencia y divulgarla, para ser un pensador icónico de nuestros tiempos”, concluyó Ávila.

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx

 

 

 

• Cada 15 minutos obtiene imágenes del Hemisferio Occidental completo y se puede dar seguimiento regional por minuto a huracanes, frentes fríos e incendios forestales, lo que lo convierte en pieza clave para la prevención de riesgos

• Recibe información de ocho satélites de órbita polar y de última generación, como el GOES 16, informó Manuel Suárez, director del Instituto de Geografía

• Su antena es única en el país y en una universidad de América Latina, expuso la responsable de las estaciones de recepción de imágenes satelitales, Gabriela Gómez

• Se podrá monitorear el cumplimiento de compromisos de la Agenda 2030 sobre el cambio climático, señaló el coordinador del laboratorio, Jorge Prado.

Con tecnología de vanguardia, la UNAM opera el Laboratorio Nacional de Observación de la Tierra (LANOT), que recibe imágenes e información casi de manera inmediata de ocho satélites, con lo que se pueden dar alertas tempranas y prevenir riesgos por incendios, tormentas severas y huracanes, entre otros.

Manuel Suárez Lastra, director del Instituto de Geografía (IGg) –en donde se ubica el LANOT–, explicó que diariamente reciben 2.7 teras de información, que se distribuyen en tiempo real a través de un geoportal, una página de Internet, y se da acceso directo a sus servidores a dependencias que requieren de estos datos.

Cada 15 minutos, agregó, se obtienen imágenes del Hemisferio Occidental completo; cada cinco minutos hay nueva información de toda Norteamérica y se puede dar seguimiento regional por minuto a huracanes, frentes fríos, incendios forestales, detección de tormentas eléctricas y eventos astronómicos como los eclipses o la actividad solar.

Además, recibe información del Solar Ultraviolet Imager, un telescopio que capta imágenes del Sol, lo que permite la emisión de alertas tempranas ante posibles impactos en la magnetósfera que provoquen interrupciones y/o daños en los sistemas de energía, comunicación y sistemas de navegación.

“Es factible observar los procesos de los mares, la atmósfera, las diferentes cubiertas vegetales y sus cambios en el corto, mediano y largo plazos; además, monitorear incendios, la actividad eruptiva, accidentes industriales de gran tamaño. Con esto es posible disminuir riesgos y prevenir desastres, incidiendo así en temas de seguridad nacional”, destacó.

El laboratorio, acotó, forma parte de un consorcio conformado por el IGg, el INEGI, la Secretaría de Marina, la Universidad Autónoma del Estado de México, el Instituto Mexicano de Tecnología del Agua, el Centro Nacional para la Prevención de Desastres y el Servicio Meteorológico Nacional, entre otras instancias.

Entre sus metas, añadió, está ampliar su capacidad de almacenamiento de información, tener acercamiento con la Agencia Espacial Europea para conseguir más datos y establecer mayor vinculación con otros laboratorios nacionales como el de Ciencias de la Sostenibilidad (LANCIS), de Buques Oceanográficos y el de Clima Espacial (LANCE).

En su oportunidad, la responsable de Estaciones de Recepción de Imágenes Satelitales del LANOT, Gabriela Gómez, expuso que se reciben datos de siete satélites de órbita polar, del sistema GEONETCast, así como de satélites de última generación GOES 16.

La UNAM, afirmó, es la única institución en el país con una antena para recibir información de este último satélite y la única universidad en América Latina con esta infraestructura.

En tanto, el coordinador del LANOT, Jorge Prado, indicó que éste forman parte de la Red Académica del Comité de Expertos de la Organización de las Naciones Unidas sobre el Manejo de Información Geoespacial Global, en la cual pueden brindar opiniones a los países sobre el uso de estos datos para atender asuntos de seguridad nacional y crecimiento económico.

El laboratorio, añadió, ayudará a vigilar el avance de las naciones en los compromisos de la Agenda 2030 en temas como el cambio climático y la reducción en la huella de carbono. “Se puede vigilar a partir de monitorear los cambios en la vegetación y usos de suelo. También podemos incidir en la seguridad alimentaria al evaluar cómo serán las cosechas anuales”.

Finalmente, Suárez Lastra aseguró que el LANOT, además de proporcionar información para la investigación científica y desarrollos tecnológicos, será un espacio para la docencia, pues en su labor se ha incorporado a becarios y estudiantes.

 

 

Aquello que observan los astrónomos como galaxias, estrellas, planetas o gas cósmico está compuesto principalmente de materia formada por protones, neutrones y electrones, la cual emite o absorbe radiación electromagnética y así puede ser detectada con telescopios.

Pero todo apunta a que en el cosmos hay también una forma de materia invisible, misma que parece ser además 5 o 6 veces más abundante que la ordinaria y perceptible. Históricamente se conoce a este misterioso componente como materia oscura, expone Vladimir Ávila Reese, investigador del Instituto de Astronomía de la UNAM.

¿Qué es la materia oscura? Es un tipo de materia que no emite ni absorbe radiación electromagnética pero que sí genera gravedad cuando se acumula a escalas astronómicas. Por su acción gravitacional sobre los objetos luminosos y el gas es que los astrónomos dan cuenta de ella.

Esta materia, enfatiza, es imprescindible en nuestras teorías de formación de galaxias. Sin ella, no tendríamos las semillas para formar galaxias... y todo lo que hay dentro de ella, incluyéndonos.

Origen de las galaxias

Las fluctuaciones cuánticas en el albor del Universo dan origen a fluctuaciones en la densidad de masa. Es fácil mostrar que estas fluctuaciones, si están hechas sólo de materia ordinaria, se borran en el Universo temprano cuando la radiación era muy caliente. No obstante, si las fluctuaciones son de materia oscura, ellas sobreviven, pues la materia oscura no interactúa con la radiación electromagnética.

Las fluctuaciones de materia oscura se hacen cada vez más densas por su gravedad hasta colapsar y formar estructuras autogravitantes que capturan a la materia ordinaria. De esta materia ordinaria, confinada en el centro de las estructuras oscuras, nacen las galaxias.

La distribución a gran escala que se calcula para la materia oscura en simulaciones en supercomputadoras explica también muy bien porqué las galaxias están distribuidas como se observa: en una compleja red de filamentos, nodos y huecos. Si lo vemos de manera tridimensional, las galaxias conforman una estructura tipo esponja. Y esto es porque ellas simplemente siguen el molde gravitacional de la materia oscura.

Galaxias desordenadas

Fue el astrónomo Fritz Zwicky, quien se dio a la tarea de observar cómo se mueven las galaxias en el cúmulo de galaxias Coma, una estructura gigantesca con más de mil galaxias.  Él encontró que las galaxias en Coma se mueven desordenadamente y a grandes velocidades.

Para mantener en equilibrio a las agitadas galaxias, debería haber un campo gravitacional muy fuerte. Zwicky notó que la masa que suman todas las galaxias observadas del cúmulo es mucho menor a lo necesario para producir este campo gravitacional. Eso lo llevó a postular que en el cúmulo hay mucha más masa que no estamos viendo, la materia oscura.

En la década de los 70, Vera Rubin y otros astrónomos, midieron la velocidad con que giran galaxias espirales como la nuestra. Encontraron que si no hay un campo gravitacional muy fuerte, las galaxias tendrían que estar desbaratándose por su enorme velocidad de rotación. Nuevamente, para explicar por qué las galaxias no se desbaratan, se propuso que están inmersas en enormes estructuras de materia oscura que las confina.

¿De qué está hecha la materia oscura?

Las propuestas más aceptadas para explicar la materia oscura vienen de la física de partículas. Hay muchas partículas elementales que se predicen y que tienen las propiedades adecuadas para ser la materia invisible que los astrónomos y cosmólogos requieren. El reto es detectar directa o indirectamente a estas elusivas partículas. Para ello hay sofisticados experimentos en curso.

Mientras tanto, el doctor Vladimir Ávila Reese y sus colegas exploran, con modelos y simulaciones en supercomputadoras, cómo son las galaxias y sus sistemas con uno u otro tipo de partícula de materia oscura propuesta. Los resultados que sean más consistentes con las observaciones astronómicas dan pautas valiosas para discernir qué tipo de partículas son las más viables.

Así pues, la determinación de la naturaleza de la materia invisible es una de las cuestiones más importantes que ocupan a la astrofísica, la cosmología y la física de partículas en la actualidad.  

 

 

 

• Rodrigo Gómez y Miguel Marcos Puente, de la ENEO de la UNAM, investigan fenómenos biológicos, sociales y psicológicos de los astronautas en condiciones de microgravedad

• Es un proyecto vanguardista de relevancia internacional, de la talla de estudios elaborados por organismos como la NASA, la Agencia Espacial Europea o la Agencia Espacial Rusa, señala el rector Enrique Graue en la presentación del texto

• La publicación es editada por la UNAM, la Agencia Espacial Mexicana y el Conacyt.

El verdadero viaje inicia en este libro. El conocimiento, la investigación y la iniciativa de un par de egresados de la Escuela Nacional de Enfermería y Obstetricia (ENEO) de la UNAM han logrado forjar los primeros pasos para llevar su especialidad fuera de la Tierra.

Con estricta argumentación científica y de vanguardia, Rodrigo Gómez Ayala y Miguel Marcos Puente Durán presentaron, en formato físico y digital, “Enfermería Espacial”, libro que emprende el abordaje teórico del cuidado de personas durante estancias espaciales prolongadas.

Es una perspectiva de la enfermería para acercarse a los sistemas de actuación clínica antes, durante y después del viaje espacial. El objetivo del texto es proponer e implementar una valoración sistematizada (realizada desde el enfoque de atención sanitaria del profesional de enfermería) en los astronautas, cuyas necesidades básicas se ven alteradas por las condiciones de microgravedad, radiación, vibración, temperatura y presión.

El libro, editado por la UNAM, la Agencia Espacial Mexicana y el Conacyt, cuenta con 19 capítulos en 242 páginas. La presentación fue escrita por el rector Enrique Graue Wiechers, y el prólogo por Linda M. H. Plush, consultora de la NASA, presidenta fundadora y directora ejecutiva de la Space Nursing Society.

“Con esta publicación se ha dado, por primera vez en la historia de la enfermería en México, un proyecto de argumentación teórica para sustentar los futuros viajes interplanetarios y las unidades médicas espaciales. El presente libro ejemplifica la obligación científica universitaria de ver hacia el futuro, generando investigaciones de la talla de aquellas elaboradas por las agencias espaciales internacionales como la NASA, la Agencia Espacial Europea o la Agencia Espacial Rusa”, refiere Graue en su escrito.

Abrochen cinturones

Esta iniciativa se reforzó ante las acciones del viaje a Marte en 2033, y México tenía que aportar algo. “Acudimos al International Astronautical Congress 2017, en donde tuvimos un acercamiento con Elon Musk (director de la compañía estadounidense SpaceX); esto hizo que quisiéramos incursionar”, recordó Gómez Ayala.

“Desde la enfermería nos dimos cuenta que había mucho por hacer en la salud de los astronautas, de ahí que empezáramos a hacer investigación, con la base de datos de la NASA y la Agencia Espacial Rusa”, dijo.

Durante el congreso, añadió Puente Durán, “vimos que había mucha área de la salud, pero ninguna especializada en enfermería, por lo que decidimos que era momento de unirla con el espacio”.

Para su estudio, los universitarios dividieron las necesidades de los astronautas en biológicas, ecológicas y sociales. Y en el ámbito temporal, contemplaron tres momentos: antes, durante y después del viaje.

“El ‘antes’ es muy parecido a la preparación física de un atleta; el ‘durante’ se asemeja a un paciente hipersedentario que está en cama y sufre rabdomiolisis, sarcopenia y osteopenia; y el ‘después’ es más cercano a un adulto mayor con descalcificación y en rehabilitación. La microgravedad afecta sobre todo los huesos y los músculos”, explicó Gómez Ayala.

El libro fue presentado en el Tercer Congreso de Medicina Espacial, en Puebla. “Lo que sigue es ponerlo a prueba, hacerlo práctico en una misión análoga para verificar qué aspectos chocan con la física real. Además, pretendemos estudiar una maestría en el King’s College de Reino Unido para seguir capacitándonos y aportar más”, compartió.

Los egresados de la ENEO estimaron que si evoluciona el proyecto, podría despuntar en un futuro no lejano hacia un plan práctico de atención de cuidados de enfermería en una misión espacial.

Para esta investigación se consultaron diversas fuentes bibliográficas científicas que dan sustento a la propuesta. “Enfermería espacial” aborda de manera general diferentes tópicos relacionados con dicha especialidad y con el astronauta.

 

 

Sábado, 09 Diciembre 2017 06:05

El Higgs y la revolución cuántica

Por primera vez en la historia se tiene completa la tabla periódica de los elementos, lo que los físicos llaman el modelo estándar.

Sábado, 25 Noviembre 2017 06:36

Las nebulosas planetarias, joyas en el espacio

María Regina Apodaca, de la licenciatura en Física en la Facultad de Ciencias, hizo simulaciones de vuelo del que será el primer vehículo en despegar y aterrizar varias veces en la superficie del planeta rojo, en 2020.

Estudia la interacción entre aire y arena durante el despegue y llegada de la aeronave, para que no se dañen los sensores o el helicóptero mismo.

Página 1 de 3
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.